Mercury speciation in gypsums produced from flue gas desulfurization by temperature programmed decomposition
نویسنده
چکیده
Temperature programmed decomposition was used to identify mercury (Hg) species in gypsum samples produced from flue gas desulfurization in two Spanish power stations (A and B). As stricter emission control/reduction policies, particularly those focusing on Hg, are being implemented, wet flue gas desulfurization (FGD) technologies used for the removal of SO2 can result in the co-removal of highly-soluble oxidized Hg. The amount of Hg retained in FGD products may increase in the future if these units are optimized for co-capture. For this reason, it is important to identify the mercury species in FGD products not only to determine the potential risk when the wastes are finally disposed of, but also to understand the behaviour of mercury during combustion and therefore to improve the technologies for mercury removal. Different mercury species were identified in the gypsum samples. In power station A, Hg-S were the most probable Hg species, whereas in power station B the main compound was Hg halogenated compounds.
منابع مشابه
Fate of mercury in flue gas desulfurization gypsum determined by Temperature Programmed Decomposition and Sequential Chemical Extraction.
A considerable amount of Hg is retained in flue gas desulfurization (FGD) gypsum from Wet Flue Gas Desulfurization (WFGD) systems. For this reason, it is important to determine the species of Hg in FGD gypsum not only to understand the mechanism of Hg removal by WFGD systems but also to determine the final fate of Hg when FGD gypsum is disposed. In this study, Temperature Programmed Decompositi...
متن کاملInvestigation on Mercury Reemission from Limestone-Gypsum Wet Flue Gas Desulfurization Slurry
Secondary atmospheric pollutions may result from wet flue gas desulfurization (WFGD) systems caused by the reduction of Hg(2+) to Hg(0) and lead to a damping of the cobenefit mercury removal efficiency by WFGD systems. The experiment on Hg(0) reemission from limestone-gypsum WFGD slurry was carried out by changing the operating conditions such as the pH, temperature, Cl(-) concentrations, and o...
متن کاملAtomistic-Level Models
Understanding the speciation of mercury throughout the coal-combustion process is crucial to the design of efficient and effective mercury removal technologies. Mercury oxidation takes place through combined homogeneous (i.e., strictly in the gas phase) and heterogeneous (i.e., gas–surface interactions) pathways. Both bench-scale combustion experiments [1] and quantumchemistry-based theoretical...
متن کاملEvaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.
Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario H...
متن کامل